

Sparseloop:

An Analytical Approach to Sparse Tensor Accelerator Modeling

<u>Yannan Nellie Wu</u>¹, Po-An Tsai², Angshuman Parashar², Vivienne Sze¹, Joel Emer^{1,2}

¹MIT ²NVIDIA

http://sparseloop.mit.edu/

Many Applications Use Sparse Tensor Algebra

Networks

Circuit Simulations

Data Science

Inefficient Processing on General-Purpose Processors

An Explosion of Sparse Tensor Accelerators

Large Design Space

Eyeriss [JSSC2017]

Eyeriss V2 [JETCAS2019]

SCNN [ISCA2017]

DSTC [ISCA2021]

ExTensor [MICRO2019]

Sparse-ReRAM [ISCA2019]

Rely on Diverse Design-Specific Terminologies

Large, Unstructured, and Confusing Design Space

Important to systematically understand and explore the design space

Existing Modeling Frameworks are Insufficient

(Design-Specific) Cycle-Level Simulators

SCNN[ISCA16], STONNE[CAL21], MAGNET[ICCAD19], DNNBuilder[ICCAD18], etc.

Slow

Inflexible

General Analytical Modeling Frameworks

Timeloop[ISPASS19], MAESTRO[MICRO19], Scale-Sim[ISPASS20], CoSA[ISCA21], etc.

No Sparsity Support

Solution Sparseloop: The First Analytical Modeling Framework for Sparse Tensor Accelerators

6

Sparseloop High-Level Framework

Challenge: Slow Workload Characterization

Accelerator Performance is Data-dependent

Traversing the exact values can be very slow

Sparseloop Solution: Statistical Characterization

Statistical Modeling Ensures Both Speed and Accuracy

Challenge: Unstructured Architecture Description

High-Level Opportunities

 $x \times 0 = 0$ x + 0 = x

Zero Values Can be Compressed Away

Ineffectual Operations Can be Eliminated

Can be Exploited Differently at Different Architecture Levels

Sparseloop Solution: Sparse Acceleration Features

Example Accelerator Architecture Organization

Systematic Descriptions with Various SAF Combinations

Example Accelerator Architecture Organization

Systematic Descriptions with Various SAF Combinations

Example Accelerator Architecture Organization

Systematic Descriptions with Various SAF Combinations

Example Accelerator Architecture Organization

Challenge: Complex Interactions Lead Slow Modeling Speed

Sparseloop Solution: Decoupled Modeling

Keep Modeling Complexity Tractable

Modeling Speed and Accuracy

- Speed
 - >2000x faster compared to cycle-level simulations
 - Months -> Hours
- Accuracy
 - Validated on well-known
 DNN accelerators
 - Maintains relative trends
 - Achieves 0.1% 8% error in cycle counts and energy consumption

Example DSTC [ISCA21] Validation

More Details in Paper!

- How to build the next-generation sparse tensor core accelerator?
 - short answer: explore support for different sparsity ratios
- What happens when we use a sparse DNN accelerator to run much sparser HPC workloads? Or vice versa?
 - short answer: sparse acceleration features become ineffective for inappropriate workloads

Summary

- Sparseloop is a fast, accurate, and flexible analytical modeling framework that enables tensor accelerator design space exploration
 - Fast: achieves >2000x speedup compared to cycle-level simulations
 - Accurate: maintains relative trend and achieves 0.1% 8% error on cycles counts and energy consumption
 - Flexible: helps designers understand the critical design trade-offs
- Resources

- Tutorial at: http://sparseloop.mit.edu/

